
Monero Python module Documentation
Release 1.1.1

Michal Salaban

Sep 28, 2022

Contents:

1 Quick start 3
1.1 Connect to testnet for your own safety . 3
1.2 Start the daemon and create a wallet . 3
1.3 Start the RPC server . 4
1.4 Install Dependencies . 4
1.5 Connect to the wallet . 4

2 Using wallet and accounts 5
2.1 The wallet . 5
2.2 Accounts and subaddresses . 5
2.3 API reference . 7

3 Addresses and payment IDs 9
3.1 Address validation and instatination . 9
3.2 Generating subaddresses . 10
3.3 Payment IDs and integrated addresses . 10
3.4 API reference . 12

4 Sending and receiving payments 15
4.1 Retrieving payments . 15
4.2 Payment and Transaction objects . 17
4.3 Mempool: Unconfirmed payments . 18
4.4 Sending payments . 18
4.5 API reference . 20

5 Interacting with daemon 21
5.1 Connecting via proxy (or TOR) . 21
5.2 Sending prepared transactions . 21
5.3 No batching due to double spends . 22
5.4 Other RPC Commands . 24
5.5 API reference . 24

6 Output recognition 25
6.1 Output data . 25

7 Backends 27
7.1 JSON RPC . 27

i

7.2 Offline . 27

8 Mnemonic seeds 29
8.1 Generating a new seed . 29
8.2 Supplying your own seed . 30
8.3 Deriving account keys . 30
8.4 API reference . 31

9 Miscellaneous functions, types and constants 33
9.1 API reference . 33

10 Exceptions 35

11 Release Notes 37
11.1 1.1.0 . 37
11.2 1.0.2 . 37
11.3 1.0 . 37
11.4 0.99 . 37
11.5 0.9 . 37
11.6 0.8 . 38
11.7 0.7 . 38
11.8 0.6 . 38
11.9 0.5 . 38

12 License 39

13 Authors 41
13.1 Acknowledgements . 41

14 Indices and tables 43

Python Module Index 45

Index 47

ii

Monero Python module Documentation, Release 1.1.1

Warning: URGENT SECURITY UPDATE The version 1.0.2 contains an urgent security update in the output
recognition code. If you’re using the module for scanning transactions and identifying outputs using the secret
view key, UPDATE THE SOFTWARE IMMEDIATELY. Otherwise you’re safe. Standard wallet operations like
receiving payments, spending, address generation etc. are NOT AFFECTED.

Welcome to the documentation for the monero Python module.

The aim of this project is to offer a set of tools for interacting with Monero cryptocurrency in Python. It provides
higher level classes representing objects from the Monero environment, like wallets, accounts, addresses, transactions.

Currently it operates over JSON RPC protocol, however other backends are planned as well.

Project homepage: https://github.com/monero-ecosystem/monero-python

Contents: 1

https://github.com/monero-ecosystem/monero-python

Monero Python module Documentation, Release 1.1.1

2 Contents:

CHAPTER 1

Quick start

This quick start tutorial will guide you through the first steps of connecting to the Monero wallet. We assume you:

• have basic knowledge of Monero concepts of the wallet and daemon,

• know how to use CLI (command line interface),

• have experience with Python.

1.1 Connect to testnet for your own safety

The testnet is another Monero network where worthless coins circulate and where, as the name suggests, all tests are
supposed to be run. It’s also a place for early deployment of future features of the currency itself. You may read a
brief explanation at stackexchange.

Warning: Please run all tests on testnet. The code presented in these docs will perform the requested operations
right away, without asking for confirmation. This is live code, not a wallet application that makes sure the user has
not made a mistake. Running on the live net, if you make a mistake, you may lose money.

1.2 Start the daemon and create a wallet

In order to connect to the testnet network you need to start the daemon:

$ monerod --testnet

If you haven’t used testnet before, it will begin downloading the blockchain, exactly like it does on the live network.
In January 2018 the testnet blockchain was slightly over 2 GiB. It may take some time to get it.

You may however create a wallet in the meantime:

3

https://monero.stackexchange.com/questions/1591/what-is-the-monero-testnet-how-can-i-participate-in-it
https://monero.stackexchange.com/questions/1591/what-is-the-monero-testnet-how-can-i-participate-in-it

Monero Python module Documentation, Release 1.1.1

$ monero-wallet-cli --testnet --generate-new-wallet testwallet

For now you may leave the password empty (testnet coins are worthless).

1.3 Start the RPC server

The RPC server is a small utility that will operate on the wallet, exposing a JSON RPC interface. Start it by typing:

$ monero-wallet-rpc --testnet --wallet-file testwallet --password "" --rpc-bind-port
→˓28088 --disable-rpc-login

Now you’re almost ready to start using Python.

1.4 Install Dependencies

Before you can use the library, you first must download the Python library dependencies with pip. It is recommended
to use a virtual environment to isolate library versions. Assuming you have virtualenv installed to your system,
set up a new env, activate it, and install the dependencies.

$ virtualenv .venv
$ source .venv/bin/activate
$ pip install -r requirements.txt
$ python

Now you can proceed.

1.5 Connect to the wallet

In [1]: from monero.wallet import Wallet

In [2]: from monero.backends.jsonrpc import JSONRPCWallet

In [3]: w = Wallet(JSONRPCWallet(port=28088))

In [4]: w.address()
Out[4]:
→˓A2GmyHHJ9jtUhPiwoAbR2tXU9LJu2U6fJjcsv3rxgkVRWU6tEYcn6C1NBc7wqCv5V7NW3zeYuzKf6RGGgZTFTpVC4QxAiAX

In [5]: w.balance()
Out[5]: Decimal('0E-12')

Congratulations! You have connected to the wallet. You may now proceed to the next part, which will tell you about
interaction with wallet and accounts.

4 Chapter 1. Quick start

https://averlytics.com/2017/08/06/virtual-environment-a-python-best-practice/

CHAPTER 2

Using wallet and accounts

The Wallet class provides an abstraction layer to retrieve wallet information, manage accounts and subaddresses, and
of course send transfers.

2.1 The wallet

The following example shows how to create and retrieve wallet’s accounts and addresses via the default JSON RPC
backend:

In [1]: from monero.wallet import Wallet

In [2]: w = Wallet(port=28088)

In [3]: w.address()
Out[3]:
→˓A2GmyHHJ9jtUhPiwoAbR2tXU9LJu2U6fJjcsv3rxgkVRWU6tEYcn6C1NBc7wqCv5V7NW3zeYuzKf6RGGgZTFTpVC4QxAiAX

2.2 Accounts and subaddresses

The accounts are stored in wallet’s accounts attribute, which is a list.

Regardless of the version, the wallet by default operates on its account of index 0, which makes it consistent with
the behavior of the CLI wallet client.

In [4]: len(w.accounts)
Out[4]: 1

In [5]: w.accounts[0]
Out[5]: <monero.account.Account at 0x7f78992d6898>

In [6]: w.accounts[0].address()
(continues on next page)

5

Monero Python module Documentation, Release 1.1.1

(continued from previous page)

Out[6]:
→˓A2GmyHHJ9jtUhPiwoAbR2tXU9LJu2U6fJjcsv3rxgkVRWU6tEYcn6C1NBc7wqCv5V7NW3zeYuzKf6RGGgZTFTpVC4QxAiAX

In [7]: w.addresses()
Out[7]:
→˓[A2GmyHHJ9jtUhPiwoAbR2tXU9LJu2U6fJjcsv3rxgkVRWU6tEYcn6C1NBc7wqCv5V7NW3zeYuzKf6RGGgZTFTpVC4QxAiAX]

2.2.1 Creating accounts and addresses

Every wallet can have separate accounts and each account can have numerous addresses. The Wallet.
new_account() and Account.new_address() will create new instances, then return a tuple consisting of
the subaddress itself, and the subaddress index within the account.

In [8]: w.new_address()
Out[8]:
→˓(BenuGf8eyVhjZwdcxEJY1MHrUfqHjPvE3d7Pi4XY5vQz53VnVpB38bCBsf8AS5rJuZhuYrqdG9URc2eFoCNPwLXtLENT4R7,
→˓ 1)

In [9]: w.addresses()
Out[9]:
[A2GmyHHJ9jtUhPiwoAbR2tXU9LJu2U6fJjcsv3rxgkVRWU6tEYcn6C1NBc7wqCv5V7NW3zeYuzKf6RGGgZTFTpVC4QxAiAX,
→˓

→˓BenuGf8eyVhjZwdcxEJY1MHrUfqHjPvE3d7Pi4XY5vQz53VnVpB38bCBsf8AS5rJuZhuYrqdG9URc2eFoCNPwLXtLENT4R7]

In [10]: w.new_account()
Out[10]: <monero.account.Account at 0x7f7894dffbe0>

In [11]: len(w.accounts)
Out[11]: 2

In [12]: w.accounts[1].address()
Out[12]:
→˓Bhd3PRVCnq5T5jjNey2hDSM8DxUgFpNjLUrKAa2iYVhYX71RuCGTekDKZKXoJPAGL763kEXaDSAsvDYb8bV77YT7Jo19GKY

In [13]: w.accounts[1].new_address()
Out[13]:
→˓(Bbz5uCtnn3Gaj1YAizaHw1FPeJ6T7kk7uQoeY48SWjezEAyrWScozLxYbqGxsV5L6VJkvw5VwECAuLVJKQtHpA3GFXJNPYu,
→˓ 1)

In [14]: w.accounts[1].addresses()
Out[14]:
[Bhd3PRVCnq5T5jjNey2hDSM8DxUgFpNjLUrKAa2iYVhYX71RuCGTekDKZKXoJPAGL763kEXaDSAsvDYb8bV77YT7Jo19GKY,
→˓

→˓Bbz5uCtnn3Gaj1YAizaHw1FPeJ6T7kk7uQoeY48SWjezEAyrWScozLxYbqGxsV5L6VJkvw5VwECAuLVJKQtHpA3GFXJNPYu]

As mentioned above, the wallet by default operates on the first account, so w.new_address() is equivalent to
w.accounts[0].new_address().

In the next chapter we will learn about addresses.

6 Chapter 2. Using wallet and accounts

Monero Python module Documentation, Release 1.1.1

2.3 API reference

class monero.account.Account(backend, index, label=None)
Monero account.

Provides interface to operate on a wallet’s account.

Accounts belong to a Wallet and act like separate sub-wallets. No funds can be moved between accounts
off-chain (without a transaction).

Parameters

• backend – a wallet backend

• index – the account’s index within the wallet

• label – optional account label as str

address()
Return account’s main address.

Return type SubAddress

address_balance(addresses=None)
Returns balances of given addresses, or all addresses if none given.

Parameters addresses – a sequence of address as Address or their indexes within the
account as ‘int‘s

Return type list of index, subaddress, balance, num_UTXOs: (int, Address, Decimal, int)

addresses()
Returns all addresses of the account.

Return type list

balance(unlocked=False)
Returns specified balance.

Parameters unlocked – if True, return the unlocked balance, otherwise return total balance

Return type Decimal

balances()
Returns a tuple of balance and unlocked balance.

Return type (Decimal, Decimal)

new_address(label=None)
Creates a new address.

Parameters label – address label as str

Return type tuple of subaddress, subaddress index (minor): (SubAddress, int)

sweep_all(address, priority=2, payment_id=None, subaddr_indices=None, unlock_time=0, re-
lay=True)

Sends all unlocked balance to an address. Returns a list of resulting transactions.

Parameters

• address – destination Address or subtype

• priority – transaction priority, implies fee. The priority can be a number from 1 to 4
(unimportant, normal, elevated, priority) or a constant from monero.const.PRIO_*.

2.3. API reference 7

Monero Python module Documentation, Release 1.1.1

• payment_id – ID for the payment (must be None if IntegratedAddress is used
as the destination)

• subaddr_indices – a sequence of subaddress indices to sweep from. Empty sequence
or None means sweep all positive balances.

• unlock_time – the extra unlock delay

• relay – if True, the wallet will relay the transaction(s) to the network immediately; when
False, it will only return the transaction(s) so they might be broadcast later

Return type list of Transaction

transfer(address, amount, priority=2, payment_id=None, unlock_time=0, relay=True)
Sends a transfer. Returns a list of resulting transactions.

Parameters

• address – destination Address or subtype

• amount – amount to send

• priority – transaction priority, implies fee. The priority can be a number from 1 to 4
(unimportant, normal, elevated, priority) or a constant from monero.const.PRIO_*.

• payment_id – ID for the payment (must be None if IntegratedAddress is used
as the destination)

• unlock_time – the extra unlock delay

• relay – if True, the wallet will relay the transaction(s) to the network immediately; when
False, it will only return the transaction(s) so they might be broadcasted later

Return type list of Transaction

transfer_multiple(destinations, priority=2, payment_id=None, unlock_time=0, relay=True)
Sends a batch of transfers. Returns a list of resulting transactions.

Parameters

• destinations – a list of destination and amount pairs: [(Address, Decimal), . . .]

• priority – transaction priority, implies fee. The priority can be a number from 1 to 4
(unimportant, normal, elevated, priority) or a constant from monero.const.PRIO_*.

• payment_id – ID for the payment (must be None if IntegratedAddress is used
as the destination)

• unlock_time – the extra unlock delay

• relay – if True, the wallet will relay the transaction(s) to the network immediately; when
False, it will only return the transaction(s) so they might be broadcast later

Return type list of transaction and amount pairs: [(Transaction, Decimal), . . .]

8 Chapter 2. Using wallet and accounts

CHAPTER 3

Addresses and payment IDs

The first, original address of the wallet is usually known as the master address. All others are just subaddresses, even
if they represent a separate account within the wallet.

Monero addresses are base58-encoded strings. You may disassemble each of them using the excellent address analysis
tool from luigi1111.

While the ordinary string representation is perfectly valid to use, you may want to use validation and other features
provided by the monero.address package.

3.1 Address validation and instatination

The function monero.address.address() will recognize and validate Monero address, returning an instance
that provides additional functionality.

The following example uses addresses from the wallet we have generated in the previous chapter.

Let’s start with the master address:

In [1]: from monero.address import address

In [2]: a = address(
→˓'A2GmyHHJ9jtUhPiwoAbR2tXU9LJu2U6fJjcsv3rxgkVRWU6tEYcn6C1NBc7wqCv5V7NW3zeYuzKf6RGGgZTFTpVC4QxAiAX
→˓')

In [3]: a.net
Out[3]: 'test'

In [4]: a.spend_key()
Out[4]: 'f0481b63cb937fa5960529247ebf6db627ff1b0bb88de9feccc3c504c16aa4b0'

In [5]: a.view_key()
Out[5]: '2c5ba76d22e48a7ea4ddabea3cce66808ba0cc91265371910f893962e977af1e'

(continues on next page)

9

https://xmr.llcoins.net/addresstests.html
https://xmr.llcoins.net/addresstests.html

Monero Python module Documentation, Release 1.1.1

(continued from previous page)

In [6]: type(a)
Out[6]: monero.address.Address

We may use a subaddress too:

In [7]: b = address(
→˓'BenuGf8eyVhjZwdcxEJY1MHrUfqHjPvE3d7Pi4XY5vQz53VnVpB38bCBsf8AS5rJuZhuYrqdG9URc2eFoCNPwLXtLENT4R7
→˓')

In [8]: b.net
Out[8]: 'test'

In [9]: b.spend_key()
Out[9]: 'ae7e136f46f618fe7f4a6b323ed60864c20070bf110978d7e3868686d5677318'

In [10]: b.view_key()
Out[10]: '2bf801cdaf3a8b41020098a6d5e194f48fa62129fe9d8f09d19fee9260665baa'

In [11]: type(b)
Out[11]: monero.address.SubAddress

These two classes, Address and SubAddress have similar functionality but one significant difference. Only the
former may form integrated address.

3.2 Generating subaddresses

It is possible to get subaddresses in two ways:

1. Creating them in the wallet file by calling .new_address() on Account or Wallet instance. In properly
synced wallet this will return an address that is guaranteed to be fresh and unused. It is the right way if you plan
to use one-time addresses to identify payments or to improve your privacy by avoiding address reuse.

2. Requesting arbitrary subaddress by calling Wallet.get_address(major, minor)where major is the
account index and minor is the index of the address within an account. Addresses obtained this way are not
guaranteed to be fresh and will not be saved as already generated within the wallet file. (Watch out for
unintentional address reuse!)

3.3 Payment IDs and integrated addresses

Each Monero transaction may carry a payment ID. It is a 64 or 256-bit long number that carries additional information
between parties. For example, a merchant can generate a payment ID for each order, or an exchange can assign one to
each user. The customer/user would then attach the ID to the transaction, so the site operator would know what is the
purpose of incoming payment.

A short, 64-bit payment ID can be integrated into an address, creating, well. . . an integrated address.

In [12]: ia = a.with_payment_id(0xfeedbadbeef)

In [13]: ia
Out[13]:
→˓ABySz66nm1QUhPiwoAbR2tXU9LJu2U6fJjcsv3rxgkVRWU6tEYcn6C1NBc7wqCv5V7NW3zeYuzKf6RGGgZTFTpVC623BT1ptXvVU2GjR1B

(continues on next page)

10 Chapter 3. Addresses and payment IDs

Monero Python module Documentation, Release 1.1.1

(continued from previous page)

In [14]: ia.base_address()
Out[14]:
→˓A2GmyHHJ9jtUhPiwoAbR2tXU9LJu2U6fJjcsv3rxgkVRWU6tEYcn6C1NBc7wqCv5V7NW3zeYuzKf6RGGgZTFTpVC4QxAiAX

In [15]: ia.base_address() == a
Out[15]: True

In [16]: ia.payment_id()
Out[16]: 00000feedbadbeef

Since subaddresses have been introduced, merchants may generate a separate address for each order, user or any other
object they expect the payments coming to. Therefore, it has been decided that subaddresses cannot generate integrated
addresses.

In [17]: b.with_payment_id(0xfeedbadbeef)

TypeError Traceback (most recent call last)
<ipython-input-23-5a5811a6962a> in <module>()
----> 1 b.with_payment_id(0xfeedbadbeef)

~/devel/monero-python/monero/address.py in with_payment_id(self, _)
99

100 def with_payment_id(self, _):
--> 101 raise TypeError("SubAddress cannot be integrated with payment ID")

102
103

TypeError: SubAddress cannot be integrated with payment ID

The monero.numbers.PaymentID class validates payment IDs. It accepts both integer and hexadecimal string
representations.

In [18]: from monero.numbers import PaymentID

In [19]: p1 = PaymentID(0xfeedbadbeef)

In [20]: p2 = PaymentID('feedbadbeef')

In [21]: p1 == p2
Out[21]: True

In [22]: p1.is_short()
Out[22]: True

In [23]: p3 = PaymentID('1234567890abcdef0')

In [24]: p3
Out[24]: 0001234567890abcdef0

In [25]: p3.is_short()
Out[25]: False

Long payment IDs cannot be integrated:

In [26]: a.with_payment_id(p3)

(continues on next page)

3.3. Payment IDs and integrated addresses 11

https://monero.stackexchange.com/questions/6606/how-to-make-an-integrated-address-based-on-a-subaddress
https://monero.stackexchange.com/questions/6606/how-to-make-an-integrated-address-based-on-a-subaddress

Monero Python module Documentation, Release 1.1.1

(continued from previous page)

TypeError Traceback (most recent call last)
<ipython-input-8-7098746f0b69> in <module>
----> 1 a.with_payment_id(p3)

~/devel/monero-python/monero/address.py in with_payment_id(self, payment_id)
138 payment_id = numbers.PaymentID(payment_id)
139 if not payment_id.is_short():

--> 140 raise TypeError("Payment ID {0} has more than 64 bits and cannot
→˓be integrated".format(payment_id))

141 prefix = const.INTADDRR_NETBYTES[const.NETS.index(self.net)]
142 data = bytearray([prefix]) + self._decoded[1:65] + struct.pack('>Q',

→˓int(payment_id))

TypeError: Payment ID
→˓0001234567890abcdef0 has more than 64
→˓bits and cannot be integrated

3.4 API reference

class monero.address.Address(addr, label=None)
Monero address.

Address of this class is the master address for a Wallet.

Parameters

• address – a Monero address as string-like object

• label – a label for the address (defaults to None)

check_private_spend_key(key)
Checks if private spend key matches this address.

Return type bool

check_private_view_key(key)
Checks if private view key matches this address.

Return type bool

with_payment_id(payment_id=0)
Integrates payment id into the address.

Parameters payment_id – int, hexadecimal string or PaymentID (max 64-bit long)

Return type IntegratedAddress

Raises TypeError if the payment id is too long

class monero.address.IntegratedAddress(address)
Monero integrated address.

A master address integrated with payment id (short one, max 64 bit).

base_address()
Returns the base address without payment id. :rtype: Address

payment_id()
Returns the integrated payment id.

12 Chapter 3. Addresses and payment IDs

Monero Python module Documentation, Release 1.1.1

Return type PaymentID

class monero.address.SubAddress(addr, label=None)
Monero subaddress.

Any type of address which is not the master one for a wallet.

monero.address.address(addr, label=None)
Discover the proper class and return instance for a given Monero address.

Parameters

• addr – the address as a string-like object

• label – a label for the address (defaults to None)

Return type Address, SubAddress or IntegratedAddress

3.4. API reference 13

Monero Python module Documentation, Release 1.1.1

14 Chapter 3. Addresses and payment IDs

CHAPTER 4

Sending and receiving payments

Payments in Monero desire a bit of explanation even for people experienced with cryptocurrency.

The main difference from coins which use transparent blockchain is that Monero transactions do not disclose sender
or recipient’s address, nor they tell what the amount is. This is a great feature that makes Monero stand out, however at
the same time it causes difficulties. In the outgoing payments you won’t see the recipient address and, in the incoming
ones you won’t see the sender.

For this reason, there are two classes representing those, IncomingPayment and OutgoingPayment. They
share most attributes from the parent Payment class but carry only one address, depending on which end of the
payment your wallet is. Your end address is present in local_address attribute.

4.1 Retrieving payments

Each Wallet and Account object has two methods which will return the list of incoming or outgoing payments:

In [4]: wallet.incoming()
Out[4]:
[in: e9a71c01875bec20812f71d155bfabf42024fde3ec82475562b817dcc8cbf8dc @ 1087530 2.
→˓120000000000 id=cb248105ea6a9189,
in: a0b876ebcf7c1d499712d84cedec836f9d50b608bb22d6cb49fd2feae3ffed14 @ 1087606 1.
→˓000000000000 id=0166d8da6c0045c51273dd65d6f63734beb8a84e0545a185b2cfd053fced9f5d,
in: d29264ad317e8fdb55ea04484c00420430c35be7b3fe6dd663f99aebf41a786c @ 1087858 3.
→˓140000000000 id=03f6649304ea4cb2,
in: f349c6badfa7f6e46666db3996b569a05c6ac4e85417551ec208d96f8a37294a @ 1088400 1.
→˓000000000000 id=0000000000000000,
in: bc8b7ef53552c2d4bce713f513418894d0e2c8dcaf72e681e1d4d5a202f1eb62 @ 1088394 8.
→˓000000000000 id=0000000000000000,
in: 5ef7ead6a041101ed326568fbb59c128403cba46076c3f353cd110d969dac808 @ 1087601 7.
→˓000000000000 id=0000000000000000,
in: cc44568337a186c2e1ccc080b43b4ae9db26a07b7afd7edeed60ce2fc4a6477f @ 1087530 10.
→˓000000000000 id=0000000000000000,
in: 41304bbb514d1abdfdb0704bf70f8d2ec4e753c57aa34b6d0525631d79113b87 @ 1088400 1.
→˓000000000000 id=1f2510a597bd634bbd130cf21e63b4ad01f4565faf0d3eb21589f496bf28f7f2,

(continues on next page)

15

Monero Python module Documentation, Release 1.1.1

(continued from previous page)

in: f34b495cec77822a70f829ec8a5a7f1e727128d62e6b1438e9cb7799654d610e @ 1087601 3.
→˓000000000000 id=f75ad90e25d71a12,
in: 5c3ab739346e9d98d38dc7b8d36a4b7b1e4b6a16276946485a69797dbf887cd8 @ 1087530 10.
→˓000000000000 id=f75ad90e25d71a12,
in: 4ea70add5d0c7db33557551b15cd174972fcfc73bf0f6a6b47b7837564b708d3 @ 1087530 4.
→˓000000000000 id=f75ad90e25d71a12]

In [5]: wallet.outgoing()
Out[5]:
[out: a8829744952facbfdaab21ca193298edb1fa16f688cd5dbcdff3ed3968155f28 @ 1088411 2.
→˓220000000000 id=0000000000000000,
out: e291fe40c6102a6193c82ac33227c08e5b30a863dba1bc63e13043a25abbb97a @ 1088523 0.
→˓123000000000 id=0000000000000000,
out: 40de45db57eb87eb8395baf5c1dc705602938317d043f463e68ed85b7108f9f3 @ 1088184 1.
→˓000000000000 id=0000000000000000,
out: 2b41226d45edb875634694fccd95f3c174daa5062763eee619ed4475a7b9207a @ 1088184 2.
→˓450000000000 id=6cc9350927868849,
out: 5e8f392a42899294e6b679ddac13cfe1dfe7f034b1e347424218af06c3dfdc85 @ 1088394 1.
→˓000000000000 id=6cc9350927868849,
out: 5d15fef66fe8de715bcbf2c181f97b9932f9f843aef4724f3026fa3cd1082c68 @ 1088521 3.
→˓333333333330 id=0000000000000000,
out: edc7c28e7b07486be48dac0a178f25a3505114267ddaf3e62ab00d9a6e996044 @ 1088394 21.
→˓000000000000 id=0000000000000000,
out: e32cccd7522e760b1c8a571fd08c75e7a1d822874380edc9656f58284eeb2fe5 @ 1088441 0.
→˓070000000000 id=0000000000000000,
out: d09666238129a1e2a71a9b7c6b30564a95baef926556bb658785cb9c38d9b25a @ 1088479 0.
→˓210000000000 id=0000000000000000,
out: 551721b5358b02565d6a9862867e3806b9a2e0d5aa5158d4d30940251d27bbdd @ 1088516 1.
→˓111111111000 id=0000000000000000,
out: 21e7eb651e8a2bc7661975e965ac6b30a6f4033c6a02e96320e41139ad3e307c @ 1088438 0.
→˓070000000000 id=0000000000000000,
out: 34833fef78c7b7c15383a78912344ecfb3ace479d27c4bd6f3e3f136ddc1d6a9 @ 1088538 3.
→˓141592653589 id=0000000000000000000000000000000079323846264338327950288419716939]

4.1.1 Filtering payments

Retrieving all payments and processing them each time sounds uncomfortable, especially in old wallets which have
seen a lot of transfers. To make it easier, you may use filtering on payment queries.

For example, you may ask for payments from a recent period, limiting the blockchain height:

In [1]: wallet.incoming(min_height=1088000)
Out[1]:
[in: f349c6badfa7f6e46666db3996b569a05c6ac4e85417551ec208d96f8a37294a @ 1088400 1.
→˓000000000000 id=0000000000000000,
in: bc8b7ef53552c2d4bce713f513418894d0e2c8dcaf72e681e1d4d5a202f1eb62 @ 1088394 8.
→˓000000000000 id=0000000000000000,
in: 41304bbb514d1abdfdb0704bf70f8d2ec4e753c57aa34b6d0525631d79113b87 @ 1088400 1.
→˓000000000000 id=1f2510a597bd634bbd130cf21e63b4ad01f4565faf0d3eb21589f496bf28f7f2]

Or ask for specific payment ID:

In [2]: wallet.incoming(payment_id='f75ad90e25d71a12')
Out[2]:
[in: f34b495cec77822a70f829ec8a5a7f1e727128d62e6b1438e9cb7799654d610e @ 1087601 3.
→˓000000000000 id=f75ad90e25d71a12,

(continues on next page)

16 Chapter 4. Sending and receiving payments

Monero Python module Documentation, Release 1.1.1

(continued from previous page)

in: 5c3ab739346e9d98d38dc7b8d36a4b7b1e4b6a16276946485a69797dbf887cd8 @ 1087530 10.
→˓000000000000 id=f75ad90e25d71a12,
in: 4ea70add5d0c7db33557551b15cd174972fcfc73bf0f6a6b47b7837564b708d3 @ 1087530 4.
→˓000000000000 id=f75ad90e25d71a12]

Or limit by both criteria at the same time:

In [3]: wallet.incoming(payment_id='f75ad90e25d71a12', min_height=1087601)
Out[3]: [in: f34b495cec77822a70f829ec8a5a7f1e727128d62e6b1438e9cb7799654d610e @
→˓1087601 3.000000000000 id=f75ad90e25d71a12]

You may also filter payments by the address:

In [4]: wallet.incoming(local_address=
→˓'BhE3cQvB7VF2uuXcpXp28Wbadez6GgjypdRS1F1Mzqn8Advd6q8VfaX8ZoEDobjejrMfpHeNXoX8MjY8q8prW1PEALgr1En
→˓')
Out[4]:
[in: 5ef7ead6a041101ed326568fbb59c128403cba46076c3f353cd110d969dac808 @ 1087601 7.
→˓000000000000 id=0000000000000000,
in: 41304bbb514d1abdfdb0704bf70f8d2ec4e753c57aa34b6d0525631d79113b87 @ 1088400 1.
→˓000000000000 id=1f2510a597bd634bbd130cf21e63b4ad01f4565faf0d3eb21589f496bf28f7f2,
in: f34b495cec77822a70f829ec8a5a7f1e727128d62e6b1438e9cb7799654d610e @ 1087601 3.
→˓000000000000 id=f75ad90e25d71a12]

The same criteria may be used for filtering outgoing payments.

Note: In outgoing payments the local_address is always set to the account’s main address, making such filtering
useless.

4.2 Payment and Transaction objects

Each of the payments returned by the wallet carries all essential data:

In [5]: incoming = wallet.incoming()

In [6]: incoming[0].amount
Out[6]: Decimal('2.120000000000')

In [7]: incoming[0].local_address
Out[7]:
→˓9tQoHWyZ4yXUgbz9nvMcFZUfDy5hxcdZabQCxmNCUukKYicXegsDL7nQpcUa3A1pF6K3fhq3scsyY88tdB1MqucULcKzWZC

In [8]: incoming[0].payment_id
Out[8]: cb248105ea6a9189

It also has a related Transaction object which offers additional information:

In [9]: incoming[0].transaction.height
Out[9]: 1087530

In [10]: incoming[0].transaction.hash
Out[10]: 'e9a71c01875bec20812f71d155bfabf42024fde3ec82475562b817dcc8cbf8dc'

4.2. Payment and Transaction objects 17

Monero Python module Documentation, Release 1.1.1

Having a running instance of the wallet you may always check the number of confirmations for each payment object:

In [11]: wallet.confirmations(incoming[0])
Out[11]: 5132

4.3 Mempool: Unconfirmed payments

New transactions, before they are mined in the blocks, land in place called mempool. Each network node updates the
mempool contents with new transactions coming from their peers, while offering them the transactions they do not
have.

Warning: The presence of a transaction in the mempool is an indication that someone has already attempted a
payment, but should never be used as a proof the payment has been done. A transaction in mempool might
be replaced by another one spending the same funds, it might expire before being included in a block due to
competition of other transactions with higher fees. It might also be a result of a sophisticated attack.

With significant amounts you should also wait for a few confirmations to appear. The top of the blockchain
sometimes gets replaced by a competing block. It is a popular practice to wait for at least 10 confirmations to
appear, which is also the standard in Monero before funds get unlocked and can be used in subsequent transactions.

However, it is possible to query the wallet for transactions in the mempool. You may use them as proofs of payment
for less significant amounts where time of acceptance is more important than limiting the risk of a fraud.

By default, the queries check only the blockchain. This behavior can be changed by confirmed and unconfirmed
query parameters that accept boolean values:

In [12]: wallet.incoming(unconfirmed=True, confirmed=False)
Out[12]: [in: 21fd4c0b2671bfc32d7c968fdf3cab1001042128d9429d4a26d4f3dc76bcecb8 @ pool
→˓3.141592653589 id=0000000000000000]

In [13]: incoming[0].transaction.height is None
Out[13]: True

In [14]: wallet.confirmations(incoming[0])
Out[14]: 0

You may as well query for both confirmed and unconfirmed transactions using wallet.
incoming(unconfirmed=True) (the default value for confirmed is True).

Note: Mempool transactions don’t belong to the blockchain (yet), therefore they have no height. Setting
min_height or max_height arguments will always exclude mempool transactions. If unconfirmed is also
set to True, a warning will be issued.

4.4 Sending payments

There are two methods for sending Monero. For a single payment use the transfer method of Wallet or
Account object.

It returns a list of resulting transactions. In most cases it will contain only one element, but sometimes, for example
when many small inputs are used, it might become necessary to split the payment into multiple transactions.

18 Chapter 4. Sending and receiving payments

Monero Python module Documentation, Release 1.1.1

In [15]: from decimal import Decimal

In [16]: txs = wallet.transfer(

→˓'BdYguH2fVo3G37o8bKp8RbTRuRsTpvBaUdxeo9fj6LFrE2XqNMYKytvBLXvNtnbmXtDUwrKLcpeH4NCuhFL2cXikDV4Rzq6
→˓',

Decimal('2.54'))

In [17]: txs
Out[17]: [f6e7532322f2cab837e668e7ee7be38f0ca4c0cb8c6cff7aa1cfaaf764735acb]

In [18]: txs[0].height is None
Out[18]: True

In [19]: wallet.confirmations(txs[0])
Out[19]: 0

In [20]: wallet.outgoing(unconfirmed=True, confirmed=False)
Out[20]: [out: f6e7532322f2cab837e668e7ee7be38f0ca4c0cb8c6cff7aa1cfaaf764735acb @
→˓pool 2.540000000000 id=0000000000000000]

When sending multiple payments at once, it is more convenient and cheaper in terms of network fees to use
transfer_multiple:

In [25]: txs = wallet.transfer_multiple([
(

→˓'Ba8xvGs5qw1JfiQVJDj8D28NuyL7MuKsB59jtnx2q1ydH4CazTWfJo9iKvTyeYEoYYQ6RT6A1DfoSj1UiwssKfdjUNumu2K
→˓', Decimal('0.11')),

(
→˓'BcVT4P2r1Md1DftWBDKHdK38Md6NtFPu4Heof8atNpxx7zbKfhMtRmUUMooU4cJuH4EKXrpke5A77XVbPhekWuiCSTaDFjw
→˓', Decimal('1.22')),

(
→˓'Bf2xXxMLdH9gyh35o6LEyKCz6ZsPRmcujBU9rFK81Brd8HmynFj16KFHAYCETU625hY2x7XBH7CvjCHAC6bxQfsjN77Jv7e
→˓', Decimal('2.33'))])

In [26]: txs
Out[26]: [2785a1ad7f6d794802ea27a00e679f8c9706be0ec0b78b73d3182c551c6d69d2]

In [28]: wallet.outgoing(unconfirmed=True, confirmed=False)
Out[28]: [out: 2785a1ad7f6d794802ea27a00e679f8c9706be0ec0b78b73d3182c551c6d69d2 @
→˓pool 3.660000000000 id=0000000000000000]

In [29]: txs[0].fee
Out[29]: Decimal('0.006282400000')

The fee is something you might like to verify before sending the transaction to the network. In such case you’d
probably be interested in the chapter about interaction with daemon.

There are some additional options you may set when sending transfer, like payment ID, priority, ring size or unlock
time. See API reference below for details.

Note: Be aware that transactions sent from another instance of the same wallet will not appear in mempool queries.
They will, of course, become visible once mined.

4.4. Sending payments 19

Monero Python module Documentation, Release 1.1.1

4.5 API reference

class monero.transaction.IncomingPayment(**kwargs)
An incoming payment (one that increases the balance of an Account)

class monero.transaction.OutgoingPayment(**kwargs)
An outgoing payment (one that decreases the balance of an Account)

class monero.transaction.Output(**kwargs)
A Monero one-time public output (A.K.A stealth address). Identified by stealth_address, or index and amount
together, it can contain differing levels of information on an output.

This class is not intended to be turned into objects by the user, it is used by backends.

class monero.transaction.Payment(**kwargs)
A payment base class, representing payment not associated with any Account.

This class is not intended to be turned into objects by the user, it is used by backends.

class monero.transaction.PaymentFilter(**filterparams)
A helper class that filters payments retrieved by the backend.

This class is not intended to be turned into objects by the user, it is used by backends.

class monero.transaction.PaymentManager(account_idx, backend, direction)
A payment query manager, handling either incoming or outgoing payments of an Account.

This class is not intended to be turned into objects by the user, it is used by backends.

class monero.transaction.Transaction(**kwargs)
A Monero transaction. Identified by hash, it can be a part of a block of some height or not yet mined (height is
None then).

This class is not intended to be turned into objects by the user, it is used by backends.

outputs(wallet=None)
Returns a list of outputs. If wallet is given, decodes destinations and amounts for outputs directed to the
wallet, provided that matching subaddresses have been already generated.

20 Chapter 4. Sending and receiving payments

CHAPTER 5

Interacting with daemon

The module offers an interface to interact with Monero daemon. For the time being, the only available method to
connnect to a daemon is by JSON RPC commands but the module allows for providing a custom backend. The
initializer accepts keywords including, but not limited to, host, port, user, and password.

In [1]: from monero.daemon import Daemon

In [2]: daemon = Daemon(port=28081)

In [3]: daemon.height()
Out[3]: 1099108

Also, the info() method will return a dictionary with details about the current daemon status.

5.1 Connecting via proxy (or TOR)

Daemon also accepts optional proxy_url keyword. A prime example of use is to route your traffic via TOR:

In [4]: daemon = Daemon(host='xmrag4hf5xlabmob.onion', proxy_url='socks5h://127.0.0.
→˓1:9050')

In [5]: daemon.height()
Out[5]: 1999790

Please refer to the docs of underlying requests library for more info on proxies.

5.2 Sending prepared transactions

The daemon connection may be used for two-step sending of transactions. For example, you may want to check the
fee before broadcasting the transaction to the network.

21

http://docs.python-requests.org/

Monero Python module Documentation, Release 1.1.1

To prepare a transaction, use transfer() or transfer_multiple() method of the wallet or account, as de-
scribed in the section about sending payments. The only difference is that now you want to add the relay=False
argument.

In [6]: from monero.wallet import Wallet

In [7]: from monero.backends.jsonrpc import JSONRPCWallet

In [8]: wallet = Wallet(JSONRPCWallet(port=28088))

In [9]: wallet.balance()
Out[9]: Decimal('17.642325205670')

In [10]: txs = wallet.transfer(
→˓'Bg1nUjsEx6UUByxr68o6gXcQRF58BpQyKauoZSo2HwubGErEnz9x6AS9o5ybmk3QmgeUpX3Msgm74QkwZKx2CeVWFrrZZqt
→˓', 10, relay=False)

Now the return value is a list of resulting transactions (usually just one) which may be inspected and validated.

In [11]: txs
Out[11]: [38964a0c8c3be041051464b413996ad8d696223dc34925d98156848ed76a3ae3]

In [12]: txs[0].fee
Out[12]: Decimal('0.003766080000')

If anything is not OK, just discard the transaction and create a new one. There’s no need to clean up anything in the
wallet.

Once you have the transaction accepted, it’s time to post it to the daemon:

In [13]: result = daemon.send_transaction(txs[0])

In [14]: result
Out[14]:
{'double_spend': False,
'fee_too_low': False,
'invalid_input': False,
'invalid_output': False,
'low_mixin': False,
'not_rct': False,
'not_relayed': False,
'overspend': False,
'reason': '',
'status': 'OK',
'too_big': False}

5.3 No batching due to double spends

Warning: The workflow described above should not be used for preparing a batch of transactions to be sent
later. The wallet doesn’t remember which inputs have been spent and will very likely use the same in the next
transaction, resulting in a double spend and broadcast failure.

The following example shows such behavior:

22 Chapter 5. Interacting with daemon

Monero Python module Documentation, Release 1.1.1

In [15]: txs1 = wallet.transfer(
→˓'BYSXsmmK44xdjNVMGprUW5Yau9tsc9SAMJrQsANjGgpk2RB83cvVhWjZAgYNwLgmhdPawATh5q1CTEoLGKZSeZqtThefV7D
→˓', 1, relay=False)

In [16]: txs2 = wallet.transfer(
→˓'Bd5m5wTjWdYSaLBKe4i2avJjuFLYMEUKpiiE86F83NFiDXKE7QseSRvS7efTtJu5xHiHm5XmxgB2mfLu7NFrG7e3UTYRzEf
→˓', 2, relay=False)

In [17]: txs1, txs2
Out[17]:
([315901f250a1018e89e1fc2b3953bd5acfdfa759f843cf5a38306a2255de6d54],
[2bd978172226b486badc8a9dcbafb04acb4760c3f2a5794c694fee8575739c6e])

In [18]: daemon.send_transaction(txs1[0])
Out[18]:
{'double_spend': False,
'fee_too_low': False,
'invalid_input': False,
'invalid_output': False,
'low_mixin': False,
'not_rct': False,
'not_relayed': False,
'overspend': False,
'reason': '',
'status': 'OK',
'too_big': False}

In [19]: daemon.send_transaction(txs2[0])

TransactionBroadcastError Traceback (most recent call last)
<ipython-input-22-f24dc5d51c78> in <module>()
----> 1 daemon.send_transaction(txs2[0])

~/devel/monero-python/monero/daemon.py in send_transaction(self, tx, relay)
10
11 def send_transaction(self, tx, relay=True):

---> 12 return self._backend.send_transaction(tx.blob, relay=relay)
13
14 def mempool(self):

~/devel/monero-python/monero/backends/jsonrpc.py in send_transaction(self, blob,
→˓relay)

36 raise exceptions.TransactionBroadcastError(
37 "{status}: {reason}".format(**res),

---> 38 details=res)
39
40 def mempool(self):

TransactionBroadcastError: Failed: double spend

The second transaction failed because it used the same inputs as the previous one. The daemon checks all incoming
transactions for possible double-spends and rejects them if such conflict is discovered.

5.3. No batching due to double spends 23

Monero Python module Documentation, Release 1.1.1

5.4 Other RPC Commands

Any RPC commands not available in the Daemon class, are likely available in the JSONRPCDaemon class. The
official Monero Daemon RPC Documentation can be found here <https://www.getmonero.org/resources/developer-
guides/daemon-rpc.html>. At the time of writing, all the RPC commands from the documentation have
been implemented in JSONRPCDaemon, with the exception of any .bin commands, /get_txpool_backlog, and
/get_output_distribution. These methods share the same name as their corresponding RPC names, and unlike the
Daemon methods, the methods in JSONRPCDaemon are designed to be lower-level. As such, the return values of
these methods reflect the raw JSON objects returned by the daemon. An example:

[In 20]: from monero.backends.jsonrpc import JSONRPCDaemon

[In 21]: daemon = JSONRPCDaemon(host='192.168.0.50')

[In 22]: sync_info = daemon.sync_info()

[In 23]: sync_info['height']
[Out 23]: 2304844

[In 24]: daemon.get_bans()
[Out 24]:
{
"bans": [

{
"host": "145.239.118.5",
"ip": 91680657,
"seconds": 72260

},
{
"host": "146.59.156.116",
"ip": 1956395922,
"seconds": 69397

}
],
"status": "OK",
"untrusted": False
}

5.5 API reference

24 Chapter 5. Interacting with daemon

CHAPTER 6

Output recognition

The module provides means to obtain output information from transactions as well as recognize and decrypt those
destined to user’s own wallet.

That functionality is a part of Transaction.outputs(wallet=None) method which may take a wallet as
optional keyword, which will make it analyze outputs against all wallet’s addresses. The wallet must have the secret
view key while secret spend key is not required (which means a view-only wallet is enough).

Note: Be aware that ed25519 cryptography used there is written in pure Python. Don’t expect high efficiency there.
If you plan a massive analysis of transactions, please check if using Monero source code wouldn’t be better for you.

Note: Please make sure the wallet you provide has all existing subaddresses generated. If you run another copy
of the wallet and use subaddresses, the wallet you pass to .outputs() must have the same or bigger set of
subaddressses present. For those missing from the wallet, no recognition will happen.

6.1 Output data

The method will return a set of Output objects. Each of them contains the following attributes:

• stealth_address — the stealth address of the output as hexadecimal string,

• amount — the amount of the output, None if unknown,

• index — the index of the output,

• transaction — the Transaction the output is a part of,

• payment — a Payment object if the output is destined to provided wallet, otherwise None,

An example usage:

25

Monero Python module Documentation, Release 1.1.1

In [1]: from monero.daemon import Daemon

In [2]: from monero.wallet import Wallet

In [3]: daemon = Daemon(port=28081)

In [4]: tx = daemon.transactions(
→˓"f79a10256859058b3961254a35a97a3d4d5d40e080c6275a3f9779acde73ca8d")[0]

In [5]: wallet = Wallet(port=28088)

In [6]: outs = tx.outputs(wallet=wallet)

In [7]: outs[0].payment.local_address
Out [7]:
→˓76Qt2xMZ3m7b2tagubEgkvG81pwf9P3JYdxR65H2BEv8c79A9pCBTacEFv87tfdcqXRemBsZLFVGHTWbqBpkoBJENBoJJS9

In [8]: outs[0].payment.amount
Out [8]: Decimal('4.000000000000')

26 Chapter 6. Output recognition

CHAPTER 7

Backends

The module comes with possibility of replacing the underlying backend. Backends are the protocols and methods used
to communicate with the Monero daemon or wallet. As of the time of this writing, the module offers the following
options:

• jsonrpc for the HTTP based RPC server,

• offline for running the wallet without Internet connection and even without the wallet file.

7.1 JSON RPC

This backend requires a running monero-wallet-rpc process with a Monero wallet file opened. This can be on
your local system or a remote node, depending on where the wallet file lives and where the daemon is running. Refer
to the quickstart for general setup information.

The Python requests library is used in order to facilitate HTTP requests to the JSON RPC interface. It makes POST
requests and passes proper headers, parameters, and payload data as per the official Wallet RPC documentation.

Also, jsonrpc backend is the default choice and both Wallet and Daemon classes can be invoked in a simple
form with no backend argument given. They will assume connection to the default mainnet port on localhost, like
below:

In [1]: wallet = Wallet() # is equivalent to: wallet = Wallet(JSONRPCWallet(host=
→˓'localhost', port=18081)

7.2 Offline

This backend allows creating a Wallet instance without network connection or even without the wallet itself. In version
0.5 the only practical use is to cold-generate subaddresses like in the example below:

27

http://docs.python-requests.org/
https://getmonero.org/resources/developer-guides/wallet-rpc.html

Monero Python module Documentation, Release 1.1.1

In [8]: w = Wallet(OfflineWallet(
→˓'47ewoP19TN7JEEnFKUJHAYhGxkeTRH82sf36giEp9AcNfDBfkAtRLX7A6rZz18bbNHPNV7ex6WYbMN3aKisFRJZ8Ebsmgef
→˓', view_key='6d9056aa2c096bfcd2f272759555e5764ba204dd362604a983fa3e0aafd35901'))

In [9]: w.get_address(100,37847)
Out[9]:
→˓883Gcsq65iqh4UL3fJTWLxY45skXyFVNQJZ4bdw4TJcqd8vafvtpX4p6HNmawqFMQ6TwJP7adzyLT1fbU6z1n9dqB9bJrfn

28 Chapter 7. Backends

CHAPTER 8

Mnemonic seeds

You can utilize the Seed class in order to generate or supply a 25 word mnemonic seed. From this mnemonic seed
you can derive public and private spend keys, public and private view keys, and public wallet address. Read more
about mnemonic seeds here.

The class also reads 12 or 13 word seeds, also known as MyMonero style.

Warning: This class deals with highly sensitive strings in both inputs and outputs. The mnemonic seed and it’s
hexadecimal representation are essentially full access keys to your Monero funds and should be handled with the
utmost care.

8.1 Generating a new seed

By default, constructing the Seed class without any parameters will generate a new 25 word mnemonic seed from a
32 byte hexadecimal string using os.urandom(32). Class construction sets the attributes phrase and hex - the
25 word mnemonic seed and it’s hexadecimal representation.

In [1]: from monero.seed import Seed

In [2]: s = Seed()

In [3]: s.phrase
Out [3]: 'fewest lipstick auburn cocoa macro circle hurried impel macro hatchet
→˓jeopardy swung aloof spiders gags jaws abducts buying alpine athlete junk patio
→˓academy loudly academy'

In [4]: s.hex
Out [4]: u'73192a945d7400a3a76a941be451a9623f37dd834006d02140a6a762b9142d80'

29

https://getmonero.org/resources/moneropedia/mnemonicseed.html

Monero Python module Documentation, Release 1.1.1

8.2 Supplying your own seed

If you have an existing mnemonic word or hexadecimal seed that you would like to derive keys for, simply pass the
seed as a string to the Seed class. Class construction will automatically detect the seed type and encode or decode to
set both phrase and hex attributes.

In [1]: from monero.seed import Seed

In [2]: s = Seed("73192a945d7400a3a76a941be451a9623f37dd834006d02140a6a762b9142d80")

In [3]: s.phrase
Out [3]: 'fewest lipstick auburn cocoa macro circle hurried impel macro hatchet
→˓jeopardy swung aloof spiders gags jaws abducts buying alpine athlete junk patio
→˓academy loudly academy'

In [4]: s.hex
Out [4]: u'73192a945d7400a3a76a941be451a9623f37dd834006d02140a6a762b9142d80'

In [5]: p = Seed("fewest lipstick auburn cocoa macro circle hurried impel macro
→˓hatchet jeopardy swung aloof spiders gags jaws abducts buying alpine athlete junk
→˓patio academy loudly academy")

In [6]: p.phrase
Out [6]: 'fewest lipstick auburn cocoa macro circle hurried impel macro hatchet
→˓jeopardy swung aloof spiders gags jaws abducts buying alpine athlete junk patio
→˓academy loudly academy'

In [7]: p.hex
Out [7]: u'73192a945d7400a3a76a941be451a9623f37dd834006d02140a6a762b9142d80'

8.3 Deriving account keys

Once the Seed class is constructed, you can derive all of the keys associated with the account.

In [1]: from monero.seed import Seed

In [2]: s = Seed("fewest lipstick auburn cocoa macro circle hurried impel macro
→˓hatchet jeopardy swung aloof spiders gags jaws abducts buying alpine athlete junk
→˓patio academy loudly academy")

In [3]: s.secret_spend_key()
Out [3]: '0b7a7bac8a5b6de2f483d703ef82b1bb3e37dd834006d02140a6a762b9142d00'

In [4]: s.secret_view_key()
Out [4]: '75ec665f4912cec813ff7f20bc75b1f375ee2f8d4bb7631ae8d1af302732a609'

In [5]: s.public_spend_key()
Out [5]: 'd5db200426637399f0076090dea01394afc2b157f94d287516911dbbcf8b2275'

In [6]: s.public_view_key()
Out [6]: 'cd235f236224b8a5f1e12568927e01a2879bfd49cec2517b0717adb97fe8ae39'

In [7]: s.public_address()

(continues on next page)

30 Chapter 8. Mnemonic seeds

https://getmonero.org/resources/moneropedia/account.html

Monero Python module Documentation, Release 1.1.1

(continued from previous page)

Out [7]:
→˓'49j9ikUyGfkSkPV8TY66p2RsSs6xL7NR5LauJTt7y6LZLhpakUnjcddUksdDgccVPEUBk2obnM1YUMaXKsGsCnow7WYjktm
→˓'

8.4 API reference

8.4. API reference 31

Monero Python module Documentation, Release 1.1.1

32 Chapter 8. Mnemonic seeds

CHAPTER 9

Miscellaneous functions, types and constants

9.1 API reference

class monero.numbers.PaymentID(payment_id)
A class that validates Monero payment ID.

Payment IDs can be used as str or int across the module, however this class offers validation as well as simple
conversion and comparison to those two primitive types.

Parameters payment_id – the payment ID as integer or hexadecimal string

is_short()
Returns True if payment ID is short enough to be included in IntegratedAddress.

monero.numbers.as_monero(amount)
Return the amount rounded to maximal Monero precision.

monero.numbers.from_atomic(amount)
Convert atomic integer of piconero to Monero decimal.

monero.numbers.to_atomic(amount)
Convert Monero decimal to atomic integer of piconero.

33

Monero Python module Documentation, Release 1.1.1

34 Chapter 9. Miscellaneous functions, types and constants

CHAPTER 10

Exceptions

exception monero.exceptions.AccountException

exception monero.exceptions.AccountIndexOutOfBound

exception monero.exceptions.AddressIndexOutOfBound

exception monero.exceptions.AmountIsZero

exception monero.exceptions.BackendException

exception monero.exceptions.DaemonIsBusy

exception monero.exceptions.GenericTransferError

exception monero.exceptions.MoneroException

exception monero.exceptions.NoDaemonConnection

exception monero.exceptions.NotEnoughMoney

exception monero.exceptions.NotEnoughUnlockedMoney

exception monero.exceptions.SignatureCheckFailed

exception monero.exceptions.TransactionBroadcastError(message, details=None)

exception monero.exceptions.TransactionIncomplete

exception monero.exceptions.TransactionNotFound

exception monero.exceptions.TransactionNotPossible

exception monero.exceptions.TransactionWithoutBlob

exception monero.exceptions.TransactionWithoutJSON

exception monero.exceptions.WalletIsNotDeterministic

exception monero.exceptions.WalletIsWatchOnly

exception monero.exceptions.WrongAddress

exception monero.exceptions.WrongPaymentId

35

Monero Python module Documentation, Release 1.1.1

36 Chapter 10. Exceptions

CHAPTER 11

Release Notes

11.1 1.1.0

This version doesn’t contain any major changes but drops support for Python 2 altogether.

11.2 1.0.2

A release with critical security fix. All since 0.99 (inclusively) are compromised and should be never used again.

11.3 1.0

A release with no significant changes from 0.99

11.4 0.99

This is a test release before 1.0. The reference library for Ed25519 cryptography has been dropped and replaced with
pynacl which is a wrapper over libsodium, the industry standard lightning-fast C library.

There are no backward-incompatible changes in the API. The aim is to have the software tested thoroughly before the
first stable release.

11.5 0.9

The hashing library sha3 has been replaced by pycryptodomex which is a more actively maintained project.
However, the code still may work with the old sha3 module. Just ignore the new dependency and run as usual.

37

https://github.com/pyca/pynacl/
https://github.com/jedisct1/libsodium/

Monero Python module Documentation, Release 1.1.1

11.6 0.8

Backward-incompatible changes:

1. The monero.prio submodule has been removed. Switch to monero.const.

2. Methods .is_mainnet(), .is_testnet(), .is_stagenet() have been removed from monero.
address.Address instances. Use .net attribute instead.

11.7 0.7

Backward-incompatible changes:

1. The Transaction.blob changes from hexadecimal to raw binary data (bytes in Python 3, str in Python
2).

Deprecations:

1. monero.const has been introduced. Transaction priority consts will move to monero.const.PRIO_*.
The monero.prio submodule has been deprecated and will be gone in 0.8.

2. Methods .is_mainnet(), .is_testnet(), .is_stagenet() have been deprecated and new .net
property has been added to all monero.address.Address instances. The values are from among
monero.const.NET_* and have string representation of "main", "test" and "stage" respectively.
Likewise, monero.seed.Seed.public_address() accepts those new values. All deprecated uses will
raise proper warnings in 0.7.x and will be gone with 0.8.

11.8 0.6

With version 0.6 the package name on PyPi has changed from monero-python to just monero.

Backward-incompatible changes:

1. The .new_address() method of both Wallet and Account returns a 2-element tuple of (subaddress,
index) where the additional element is the index of the subaddress within current account.

11.9 0.5

Backward-incompatible changes:

1. The ringsize parameter is gone from .transfer() and .transfer_multiple() methods of both
Wallet and Account. Since Monero 0.13 the ring size is of constant value 11.

2. The class hierarchy in monero.address has been reordered. Address now represents only master ad-
dress of a wallet. SubAddress doesn’t inherit after it anymore, but all classes share the common base of
BaseAddress.

In particular, make sure that your code doesn’t check a presence of Monero address by checking
isinstance(x, monero.address.Address). That will not work for sub-addresses anymore. Re-
place it by isinstance(x, monero.address.BaseAddress).

38 Chapter 11. Release Notes

CHAPTER 12

License

BSD 3-Clause License

Copyright (c) 2017 Michał Sałaban

Copyright (c) 2016 The MoneroPy Developers

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

39

Monero Python module Documentation, Release 1.1.1

40 Chapter 12. License

CHAPTER 13

Authors

• Michał Sałaban <michal@salaban.info>

• MoneroPy Developers (monero/base58.py taken from MoneroPy)

• thomasv@gitorious (monero/seed.py based on Electrum)

• and other Contributors: lalanza808, cryptochangements34, atward, rooterkyberian, brucexiu, lialsoftlab, mon-
eroexamples, massanchik, MrClottom, jeffro256, sometato, kayabaNerve, j-berman.

13.1 Acknowledgements

This project has been generously funded by the donors of Monero Forum Funding System. You may see the original
project submission.

41

mailto:michal@salaban.info
https://github.com/bigreddmachine/MoneroPy
mailto:thomasv@gitorious
https://github.com/spesmilo/electrum
https://github.com/lalanza808
https://github.com/cryptochangements34
https://github.com/atward
https://github.com/rooterkyberian
https://github.com/brucexiu
https://github.com/lialsoftlab
https://github.com/moneroexamples
https://github.com/moneroexamples
https://github.com/massanchik
https://github.com/MrClottom
https://github.com/jeffro256
https://github.com/sometato
https://github.com/kayabaNerve
https://github.com/j-berman
https://forum.getmonero.org/8/funding-required/89298/comprehensive-python-module-for-handling-monero
https://forum.getmonero.org/8/funding-required/89298/comprehensive-python-module-for-handling-monero

Monero Python module Documentation, Release 1.1.1

42 Chapter 13. Authors

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

43

Monero Python module Documentation, Release 1.1.1

44 Chapter 14. Indices and tables

Python Module Index

m
monero.account, 7
monero.address, 12
monero.exceptions, 35
monero.numbers, 33
monero.transaction, 20

45

Monero Python module Documentation, Release 1.1.1

46 Python Module Index

Index

A
Account (class in monero.account), 7
AccountException, 35
AccountIndexOutOfBound, 35
Address (class in monero.address), 12
address() (in module monero.address), 13
address() (monero.account.Account method), 7
address_balance() (monero.account.Account

method), 7
addresses() (monero.account.Account method), 7
AddressIndexOutOfBound, 35
AmountIsZero, 35
as_monero() (in module monero.numbers), 33

B
BackendException, 35
balance() (monero.account.Account method), 7
balances() (monero.account.Account method), 7
base_address() (monero.address.IntegratedAddress

method), 12

C
check_private_spend_key() (mon-

ero.address.Address method), 12
check_private_view_key() (mon-

ero.address.Address method), 12

D
DaemonIsBusy, 35

F
from_atomic() (in module monero.numbers), 33

G
GenericTransferError, 35

I
IncomingPayment (class in monero.transaction), 20
IntegratedAddress (class in monero.address), 12

is_short() (monero.numbers.PaymentID method), 33

M
monero.account (module), 7
monero.address (module), 12
monero.exceptions (module), 35
monero.numbers (module), 33
monero.transaction (module), 20
MoneroException, 35

N
new_address() (monero.account.Account method), 7
NoDaemonConnection, 35
NotEnoughMoney, 35
NotEnoughUnlockedMoney, 35

O
OutgoingPayment (class in monero.transaction), 20
Output (class in monero.transaction), 20
outputs() (monero.transaction.Transaction method),

20

P
Payment (class in monero.transaction), 20
payment_id() (monero.address.IntegratedAddress

method), 12
PaymentFilter (class in monero.transaction), 20
PaymentID (class in monero.numbers), 33
PaymentManager (class in monero.transaction), 20

S
SignatureCheckFailed, 35
SubAddress (class in monero.address), 13
sweep_all() (monero.account.Account method), 7

T
to_atomic() (in module monero.numbers), 33
Transaction (class in monero.transaction), 20
TransactionBroadcastError, 35

47

Monero Python module Documentation, Release 1.1.1

TransactionIncomplete, 35
TransactionNotFound, 35
TransactionNotPossible, 35
TransactionWithoutBlob, 35
TransactionWithoutJSON, 35
transfer() (monero.account.Account method), 8
transfer_multiple() (monero.account.Account

method), 8

W
WalletIsNotDeterministic, 35
WalletIsWatchOnly, 35
with_payment_id() (monero.address.Address

method), 12
WrongAddress, 35
WrongPaymentId, 35

48 Index

	Quick start
	Connect to testnet for your own safety
	Start the daemon and create a wallet
	Start the RPC server
	Install Dependencies
	Connect to the wallet

	Using wallet and accounts
	The wallet
	Accounts and subaddresses
	API reference

	Addresses and payment IDs
	Address validation and instatination
	Generating subaddresses
	Payment IDs and integrated addresses
	API reference

	Sending and receiving payments
	Retrieving payments
	Payment and Transaction objects
	Mempool: Unconfirmed payments
	Sending payments
	API reference

	Interacting with daemon
	Connecting via proxy (or TOR)
	Sending prepared transactions
	No batching due to double spends
	Other RPC Commands
	API reference

	Output recognition
	Output data

	Backends
	JSON RPC
	Offline

	Mnemonic seeds
	Generating a new seed
	Supplying your own seed
	Deriving account keys
	API reference

	Miscellaneous functions, types and constants
	API reference

	Exceptions
	Release Notes
	1.1.0
	1.0.2
	1.0
	0.99
	0.9
	0.8
	0.7
	0.6
	0.5

	License
	Authors
	Acknowledgements

	Indices and tables
	Python Module Index
	Index

